
TIC - Turing International Contest (I Edition)

Exercises

• If not otherwise specified, input sequences are always assumed to be non empty. That is, all input sequences
contain at least one symbol.

• Integer numbers are assumed to be greater than or equal to zero, represented in decimal notation (using digits
0,1,...,9) with no leading zeros which are not significant. For example, 0 and 19 are valid decimal numbers,
while 0032 must be written as 32.

• When producing a solution, recall to remove from the final tape all symbols that do not make up the answer!

• Each time you save a solution of an exercise on the Turing Machine simulator, the timestamp of the exercise
gets updated with the current time.

Exercise 1 Heads or Tails [1 point].

A game of “heads or tails” is played by two players as follows. Initially, the first player decides between betting
on head (symbol H), or tail (symbol T). Then, the second player is forced to bet on the option not taken by the first
player. Finally, a coin is tossed, and based on the outcome of the toss, either the first player or the second scores
a point. Write a Turing Machine program which, given an input tape containing the first player’s choice (H or T),
appends to it the second player’s forced choice (T or H, respectively), and terminates.

Example
Input tape Final tape

H HT

T TH

Exercise 2 Keeping Score [3 points].

Consider the game of “heads or tails” from the previous exercise. A full game is encoded by following the bets of
the two players with the actual outcome of a single toss (again, either T or H). Write a program for a Turing Machine
that, when given as input a sequence of full games (with no intervening separators), terminates by leaving on the
tape the cumulative score of the first player, as a decimal number.

Example
Input tape Final tape

HTT 0

HTH 1

HTTHTHTHT 2

THTHTHTHHTHTHTHTHHTHHTHTHTHTHHHTHTHTHTTHTHTHT 10

THHHTT 0

1

Exercise 3 Odds and Evens [4 points].

In a game of “odds and evens”, two players simultaneously reveal their hands, each of which indicates a number
between 0 and 5 depending on how many fingers are extended. Before revealing their hand, the players bet on
whether the sum of the two numbers will be odd (symbol O) or even (symbol E) – of course, the two players will bet
on different outcomes, as for “heads or tails”. The player who bet on the correct answer wins the game.

We will encode a game of “odds and evens” by writing on the tape the bets of the two players, in order, (OE
or EO), followed by their numbers (each between 0 and 5, again in the same order). Write a program for a Turing
Machine that, when given as input the encoding of a game as specified above, terminates leaving on the tape the
same input, followed by the symbol “A” if the first player won, or “B” if the second player won.
Notice: 0 is considered an even number.

Example
Input tape Final tape

EO33 EO33A

EO34 EO34B

OE05 OE05A

OE55 OE55B

Exercise 4 The unbalanced coin [6 points].

We would expect a coin toss in “heads or tails” to result with the same likelihood in a H or T (i.e., 50% probability
of each result). An unbalanced coin might end up producing significantly more H than T, or vice-versa. Of course, on
a small number of tosses any difference in the frequency of the two results might be due to chance: but the chance
that significant differences in frequency are observed in a given number of tosses, decreases as the number of tosses
increases (i.e., in 1000 tosses we would expect H and T to appear almost exactly 500 times each).

We declare a coin unbalanced if in a series of tosses of length 10 or more, the number of Hs and Ts differ by at
least 25% of the number of tosses. Write a program for a Turing Machine that, given as input a sequence of tosses
(each of them encoded as a single H or T) of length > 9, terminates by leaving on the tape “OK” if the coin was
balanced, “KO” otherwise.

Example
Input tape Final tape

HTHTHTHHTTTHHTTHTHH OK

THTTHTHTTTHTTHTTTHT KO

HTHTHHTTHTHTHHHTHHHTTTHTHTHHHTHTTTHTHTHT OK

2

Exercise 5 A chain of words [7 points].

A series of words form a chain if the last segment of each word, except for the final one, is a prefix of the next
word. The last segment of a word is defined as the substring of the word starting with the last vowel (included) and
ending at the end of the word. For this problem, we consider A, E, I, O, U, Y, W to be vowels. A typical word game
based on this concept would have each player in a group, in turn, quickly come up with a word that “continues the
chain” left by the previous player, until one utters a non-chained word, or takes too long to answer. As an example,
the following is a valid chain: round under error orifice cement entangled education onwards.

Write a program for a Turing Machine that, given as input a series of words, terminates leaving on the tape the
first non-chained word and all subsequent ones, or an empty tape if all words were chained (i.e., if the sequence was
a valid chain).

Example
Input tape Final tape

CARD ARDENT ENTITY TYPE ERROR TYPE ERROR

BOARD ARDENT ENTITY YOGURT

BALL ALL ALLEGATION NATION NATION

BALLROOM ROOM ROOM

BALLROOM ONWARD ARDUOUS USING ONWARD ARDUOUS USING

RED EDUCATION ONTARIO OLIVE EMINENCE EDGY

Exercise 6 Top 3 cards [8 points].

A deck of French playing cards is composed of four suits: Hearts, Tiles, Clovers and Pikes (we will use symbols
H, T, C, P for suits). Each suit includes 13 cards of different values, traditionally marked - in increasing value order -
2, 3, 4, 5, 6, 7, 8, 9, 10, J, Q, K, A. To keep things simple, we will use a single symbol “0” (zero) to signify 10.

Hearts Tiles Clovers Pikes

A card will thus be identified by its suit and value, e.g. 4H to mean “four of hearts”. In our game, the rank
of a card is determined by its value, and in case of value parity by its suit, with H > T > C > P. Thus, 2P is the
lowest-ranked card of all, and AH is the highest-ranked. Write a program for a Turing Machine that, given as input
a hand of cards from a single deck (hence, there can be no duplicates) composed of at least 3 and at most 52 cards,
terminates leaving on the tape only the three top-valued cards in the hand, in descending order of rank.

Example
Input tape Final tape

4H8P8HKT6T KT8H8P

JC4HAT9CQP5HJH8T2H5C ATQPJH

2P2C2T2H 2H2T2C

2P3P4P 4P3P2P

9T0H5T3T0PAH AH0H0P

3

Exercise 7 Poker [11 points].

In the game of Poker, each player has a hand of 5 cards drawn from a French deck as described in the previous
problem. The game has an elaborate structure of bets and card swapping, in several variants, but we will consider
the simpler problem of identifying the strongest combination that a player has in hand. These combinations, in
decreasing order of strength, are as follows:

Name Description Example

Straight flush 5 cards of consecutive values, all of the same suit 4H 5H 6H 7H 8H

Four of a kind 4 cards of the same value QH QC QT QP

Full house 3 cards of one value and 2 cards of another value 3C 3H 3P JH JT

Flush 5 cards of the same suit 3C 7C AC 8C JC

Straight 5 cards of consecutive values 9H 0C JH QT KC

Three of a kind 3 cards of the same value 5P 5H 5C

Two pairs 2 cards of one value, 2 of another value 4P 4H KH KT

Pair 2 cards of the same value AH AP

High card 1 card (the one with the highest rank in the hand) KH

Write a program for a Turing Machine that, when given as input a Poker hand represented as a sequence of 5
cards, separated by spaces, terminates leaving as output the strongest combination in the hand, in the same format,
with the cards in the same order they had in the original hand.

Example
Input tape Final tape

4H 8P 8H KT 6T 8P 8H

JC 4H AT 0C QP AT

2P 2C 2T 2H AH 2P 2C 2T 2H

3C 3P 3H AH AC 3C 3P 3H AH AC

6C 2P 3P 4P 5H 6C 2P 3P 4P 5H

3P JH 0P JP JC JH JP JC

4

Exercise 8 Undercut [12 points].

In this game, each of two players simultaneously chooses a number between 0 and 5 (as in “odds and evens”).
If the two numbers are consecutive (e.g, player A chooses 3 and player B chooses 4), then the player who chose the
lesser of the two numbers gets as many points as the sum of the two numbers (e.g., player A gets 7 points, player
B 0 points). In all other cases, (e.g., player A chooses 2 and player B chooses 5) each player gets as many points as
the number they chose (e.g., player A gets 2 points and player B gets 5 points). The game is played repeatedly until
a player reaches a score of 50 or more, upon which the player with the highest score is declared the winner and the
game ends. It is possible that the two players cross the 50 points mark in the same round and end up with exactly
the same final score, in which case the game ends in a draw.

Write a Turing Machine program that, when given as input the current scores of two players A and B (each
represented as a two-digits decimal number, separated by /), followed by a symbol = and then the numbers called
by the two players (each of them between 0 and 5), terminates leaving on the tape the updated scores, separated by
/, followed by =, and if the game is finished, one of the strings “A WINS” or “B WINS” or “DRAW”, according to the
outcome. If the game is not finished yet, nothing follows the = symbol.

Example
Input tape Final tape

00/00=35 03/05=

00/00=34 07/00=

12/15=55 17/20=

12/15=01 13/15=

17/20=54 17/29=

48/30=12 51/30=A WINS

30/48=52 35/50=B WINS

49/45=15 50/50=DRAW

5

Exercise 9 An AI for Undercut [20 points].

A strategy to win a game of Undercut is to correctly predict what number the opponent will choose next. If we
predict the opponent will choose 1, our best move is to choose 5, gaining a +4 advantage. If we predict the opponent
will choose 5, our best move is to choose 4, gaining a +9 advantage, etc. Humans tend to be repetitive. For example,
if we have noticed that after playing a 5, and losing 9 points against our 4, our opponent has in the past most often
chosen a 1, we can then predict he will choose a 1 again, and thus play a 5 in order to maximize our win.

We want to develop an automated Undercut player (sometimes called an “artificial intelligence”, or AI) that will
work based on this principle. In particular, let us assume that the program has a record of all the numbers played
by the two players in a match so far, as a sequence of numbers (in pairs: player A first, player B second). The AI
plays as player A. The AI has to check which number has been played most often by player B in the past right after
the pair of numbers that have just been played, and then choose a number (in 0-5) that will maximize player A’s
expected gain. In case multiple numbers have been chosen by the opponent the same number of times, the AI will
predict the highest. If multiple numbers would produce the same advantage gain for the given prediction, the AI
will select the lowest (for example, ”12” makes A gain 3 points and B 0, while ”52” makes A gain 5 points and B 2:
in both cases the advantage gained by A is 3 points, so playing 1 is preferred by the AI). If the pair just played has
never appeared in the past, the AI will select 3.

Write a program for a Turing Machine that implements the AI playing as player A, having as input a non-empty
sequence of pairs played so far (thus, an even number of symbols in 0-5) separated by spaces, and terminates leaving
on the tape player A’s best next move.

Example
Input tape Final tape

32 54 35 25 32 51 54 14 32 15 54 35 4

32 54 35 25 32 51 54 14 32 15 54 54 3

32 54 35 25 32 51 54 14 32 15 54 32 4

32 54 35 25 32 51 54 14 32 15 54 50 3

32 54 35 25 32 51 54 14 32 15 54 25 1

55 3

55 31 3

55 31 31 5

55 31 31 55 5

55 31 31 55 54 3

55 31 31 55 54 31 4

55 31 31 55 54 31 54 5

55 31 31 55 54 31 54 54 3

6

Exercise 10 Connect Four [25 points].

The game Connect Four is played on a grid of 6 rows and 7 columns. Two players play the game, A and B; each
of them, in turn, can place one of their tokens (which we will denote with symbols A and B respectively) on the grid.
Player A moves first. Tokens can only “slide down from the top”, e.g. they can only be placed in a free cell on the
bottom row, or immediately on top of another token. The first player to form a straight line (horizontal, vertical or
diagonal) of at least 4 tokens of the corresponding type, wins the game.

We want an AI playing as player B, that looking at the state of the board (immediately after player A’s move), if
there is a risk that player A will win on the next round, will suggest a move that will prevent that win (a “blocking
move”), unless B can win on this round (a “winning move”), in which case the AI should suggest the winning move
instead.

Write a program for a Turing Machine that, given an encoding of the board (with A and B denoting placed tokens,
denoting a free cell, and each row of the board, from top to bottom, consecutively placed with no separator on
the tape) will terminate leaving as only output the index of the column (1-7, numbered left-to-right) of the winning
move if there is one, or of a blocking move if there is one (and there are no winning moves), or 0 otherwise. In
case multiple winning or blocking moves are possible (e.g., a line of three tokens can be extended on both ends), the
program will output the index of the lowest-numbered column which constitutes a winning or blocking move.

Note: In the following example we split the input on multiple rows for clarity, but all symbols will be consec-
utive on the tape, one row at a time from top to bottom. For example, the input tape of the first example is
##################################B#AAA##B .

Example
Input tape Final tape / Comment

#######

####### 1

#######

####### There are no winning moves and 2 blocking moves,
######B 1 and 5. 1 is the lowest-numbered one.
#AAA##B

#######

####### 7

#######

##A###B 7 is a winning move.
##AA##B

#AABABB

#######

####### 3

#######

##A#### There are no winning moves and 1 blocking move,
##A###B in column 3.
#AABABB

#######

####### 0

#######

##B###A There are no winning moves and no blocking moves;
##A###B in fact, no player has 3 tokens already aligned.
#AABABB

#######

####### 5

#######

##BAA#A There are no winning moves and 1 blocking move,
#BABBAB in column 5.
#AABABB

7

